| APA | Original Link | arXiv or similar |
|---|---|---|
| Sebastianelli, A., Mauro, F., Ciabatti, G., Spiller, D., Le Saux, B., Gamba, P., & Ullo, S. (2025). Quanv4eo: empowering earth observation by means of quanvolutional neural networks. IEEE Transactions on Geoscience and Remote Sensing. | link | link |
| Pastori, L., Grundner, A., Eyring, V., & Schwabe, M. (2025). Quantum Neural Networks for Cloud Cover Parameterizations in Climate Models. arXiv preprint arXiv:2502.10131. | link | link |
| Mauro, F., Razzano, F., Stasio, P. Di., Sebastianelli, A., Meoni, G., Schirinzi, G., Gamba, P., & Ullo, S. L. (2025). Quantum-Enhanced Water Quality Monitoring: Exploiting ΦSat-2 Data with Quanvolution. IEEE Geoscience and Remote Sensing Letters. | link | link |
| Fan, F., Shi, Y., Guggemos, T., & Zhu, X. X. (2025). Hybrid Quantum Deep Learning With Superpixel Encoding for Earth Observation Data Classification. IEEE Transactions on Neural Networks and Learning Systems. | link | link |
| Liliopoulos, I., Varsamis, G. D., Milchanowski, K., Martin‑Cuevas, R., Safouri, K., Dimitrakis, P., & Karafyllidis, I. G. (2025). Hybrid classical-quantum multilayer neural networks for monitoring agricultural activities using remote sensing data. Quantum Machine Intelligence, 7(1), 4. | link | link |
| APA | Original Link | arXiv or similar |
|---|---|---|
| Mauro, F., Sebastianelli, A., Saux, B. L., Gamba, P., & Ullo, S. L. (2024). A Hybrid MLP-Quantum approach in Graph Convolutional Neural Networks for Oceanic Nino Index (ONI) prediction. arXiv preprint arXiv:2401.16049. | link | link |
| Mauro, F., Sebastianelli, A., Del Rosso, M. P., Gamba, P., & Ullo, S. L. (2024). QSpeckleFilter: a Quantum Machine Learning approach for SAR speckle filtering. arXiv preprint arXiv:2402.01235. | link | link |
| Pasetto, E., Riedel, M., Michielsen, K., & Cavallaro, G. (2024). Kernel Approximation on a Quantum Annealer for Remote Sensing Regression Tasks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. | link | link |
| Malarvanan, A. S. (2024). Hybrid Quantum Neural Network Advantage for Radar-Based Drone Detection and Classification in Low Signal-to-Noise Ratio. arXiv preprint arXiv:2403.02080. | link | link |
| Delilbasic, A., Le Saux, B., Riedel, M., Michielsen, K., & Cavallaro, G. (2024, April). Quantum Annealing for Semantic Segmentation in Remote Sensing: Potential and Limitations. In 2024 IEEE Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS) (pp. 376-380). IEEE. | link | link |
| Ghosh, R., Delilbasic, A., Cavallaro, G., & Bovolo, F. (2024, April). A Hybrid Quantum-Classical CNN Architecture for Semantic Segmentation of Radar Sounder Data. In 2024 IEEE Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS) (pp. 366-370). IEEE. | link | link |
| Chang, S. Y., Grossi, M., Thanasilp, S., Le Saux, B., & Vallecorsa, S. (2024). Latent Style-based Quantum GAN for high-quality Image Generation. arXiv preprint arXiv:2406.02668. | link | link |
| Glatting, K., Meyer, J., Huber, S., & Krieger, G. (2024, July). Quantum Kernel Methods for Insar Phase Unwrapping. In IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium (pp. 437-441). IEEE. | link | link |
| Sarkar, D., Dimitrov, E., Vieites, P. S., Fernandez-Urrutia, M., Kannan, V., & PS, P. (2024, July). Multiclass Land Use/Land Cover (LULC) Classification Using Quantum Enhanced Support Vector Machines. In IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium (pp. 446-449). IEEE. | link | link |
| Meyer, J., Glatting, K., Huber, S., & Krieger, G. (2024, July). Quantum Reinforcement Learning for Cognitive SAR. In IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium (pp. 794-798). IEEE. | link | link |
| Miroszewski, A., Le Saux, B., Longépé, N., & Nalepa, J. (2024, July). Utility of quantum kernel machines in remote sensing applications. In IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium (pp. 799-803). IEEE. | link | link |
| Painchart, H., Van Waveren, M., Mora, B., & Pasero, G. (2024, July). Quantum Algorithm for the Analysis of Temporal Sequences of Satellite Images. In IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium (pp. 804-807). IEEE. | link | link |
| Asanjan, A. A., Brady, L., Suri, N., Izquierdo, Z. G., Lott, P. A., Grabbe, S., & Rieffel, E. (2024, July). Wildfire Segmentation From Remotely Sensed Data Using Quantum-Compatible Conditional Vector Quantized-Variational Autoencoders. In IEEE International Geoscience and Remote Sensing Symposium (IGARSS). | link | link |
| Pai, A. G., Buddhiraju, K. M., & Durbha, S. S. (2024, July). Binary Classification of Remotely Sensed Images Using SVD Based GLCM Features in Quantum Framework. In IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium (pp. 808-811). IEEE. | link | link |
| Wijata, A. M., Miroszewski, A., Le Saux, B., Longépé, N., Ruszczak, B., & Nalepa, J. (2024, July). Detection of bare soil in hyperspectral images using quantum-kernel support vector machines. In IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium (pp. 817-822). IEEE. | link | link |
| Lin, C. H., Kuo, C. Y., & Young, S. S. (2024, July). Quantum Adversarial Learning for Hyperspectral Remote Sensing. In IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium (pp. 7807-7811). IEEE. | link | link |
| Xu, Y., Huang, H., & State, R. (2024). Cropland Quantum Learning: A Hybrid Quantum-Classical Neural Network for Cropland Classification. In 2024 IEEE 3rd International Conference on Computing and Machine Intelligence (ICMI) (pp. 1-7). IEEE. | link | link |
| Fan, F., Shi, Y., & Zhu, X. X. (2024). Land Cover Classification From Sentinel-2 Images With Quantum-Classical Convolutional Neural Networks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. | link | link |
| Fan, F., Shi, Y., Guggemos, T., & Zhu, X. X. (2024). Hybrid quantum-classical convolutional neural network model for image classification. IEEE transactions on neural networks and learning systems. | link | link |
| Zollner, J. M., Walther, P., & Werner, M. (2024). Satellite Image Representations for Quantum Classifiers. Datenbank-Spektrum, 24(1), 33-41. | link | link |
| Park, S., Jung, S., & Kim, J. (2024). Dynamic quantum federated learning for satellite-ground integrated systems using slimmable quantum neural networks. IEEE Access, 12, 58239-58247. | link | link |
| Ghosh, R., Delilbasic, A., Cavallaro, G., & Bovolo, F. (2024, July). A CNN Architecture Tailored For Quantum Feature Map-Based Radar Sounder Signal Segmentation. In IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium (pp. 442-445). IEEE. | link | link |
| Rodriguez-Grasa, P., Farzan Rodríguez, R., Novelli, G., Ban, Y., & Sanz, M. (2024). Satellite image classification with neural quantum kernels. Machine Learning: Science and Technology. | link | link |
| Hsu, S. M., Lin, T. H., & Lin, C. H. (2024, July). HyperQUEEN-MF: Hyperspectral quantum deep network with multi-scale feature fusion for quantum image super-resolution. In 2024 IEEE 13rd Sensor Array and Multichannel Signal Processing Workshop (SAM) (pp. 1-5). IEEE. | link | link |
| Lin, C. H., Lin, T. H., & Chanussot, J. (2024). Quantum Information-Empowered Graph Neural Network for Hyperspectral Change Detection. IEEE Transactions on Geoscience and Remote Sensing. | link | link |
| De Falco, F., Ceschini, A., Sebastianelli, A., Le Saux, B., & Panella, M. (2024). Quantum latent diffusion models. Quantum Machine Intelligence, 6(2), 85. | link | link |
| Papa, L., Sebastianelli, A., Meoni, G., & Amerini, I. (2024). On the impact of key design aspects in simulated Hybrid Quantum Neural Networks for Earth Observation. arXiv preprint arXiv:2410.08677. | link | link |
| Priyanka, G. S., & Venkatesan, M. (2024, August). Hyperspectral Image Classification Using Quantum Machine Learning. In 2024 1st International Conference on Advanced Computing and Emerging Technologies (ACET) (pp. 1-7). IEEE. | link | link |
| Miller, L., Uehara, G., & Spanias, A. (2024, March). Quantum Image Fusion Methods for Remote Sensing. In 2024 IEEE Aerospace Conference (pp. 1-9). IEEE. | link | link |
| Yu, L. H., Li, X. Y., Chen, G., Zhu, Q. S., Li, H., & Yang, G. W. (2024). QUSL: Quantum unsupervised image similarity learning with enhanced performance. Expert Systems with Applications, 258, 125112. | link | link |
| Miroszewski, A., Asiani, M. F., Mielczarek, J., Saux, B. L., & Nalepa, J. (2024). In search of quantum advantage: Estimating the number of shots in quantum kernel methods. arXiv preprint arXiv:2407.15776. | link | link |
| Zardini, E., Delilbasic, A., Blanzieri, E., Cavallaro, G., & Pastorello, D. (2024). Local Binary and Multiclass SVMs Trained on a Quantum Annealer. IEEE Transactions on Quantum Engineering, 5, 1-12. | link | link |
| APA | Original Link | arXiv or similar |
|---|---|---|
| Ullo, S. L., Mauro, F., Sebastianelli, A., Le Saux, B., & Gamba, P. E. (2024). Enhancing Earth Observation with Hybrid Quantum Neural Networks. AGU23. | link | link |
| Sebastianelli, A., Del Rosso, M. P., Ullo, S. L., & Gamba, P. (2023). On Quantum Hyperparameters Selection in Hybrid Classifiers for Earth Observation Data. IEEE Geoscience and Remote Sensing Letters. | link | link |
| Delilbasic, A., Le Saux, B., Riedel, M., Michielsen, K., & Cavallaro, G. (2023). A single-step multiclass svm based on quantum annealing for remote sensing data classification. IEEE journal of selected topics in applied earth observations and remote sensing. | link | link |
| Miroszewski, A., Nalepa, J., Saux, B. L., & Mielczarek, J. (2023). Quantum Machine Learning for Remote Sensing: Exploring potential and challenges. arXiv preprint arXiv:2311.07626. | link | link |
| Gupta, M. K., Romaszewski, M., & Gawron, P. (2023). Potential of quantum machine learning for processing multispectral Earth observation data. Authorea Preprints. | link | link |
| Chang, S. Y., Grossi, M., Le Saux, B., & Vallecorsa, S. (2023, September). Approximately equivariant quantum neural network for p4m group symmetries in images. In 2023 IEEE International Conference on Quantum Computing and Engineering (QCE) (Vol. 1, pp. 229-235). IEEE. | link | link |
| Miroszewski, A., Mielczarek, J., Czelusta, G., Szczepanek, F., Grabowski, B., Le Saux, B., & Nalepa, J. (2023). Detecting clouds in multispectral satellite images using quantum-kernel support vector machines. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. | link | link |
| Miroszewski, A., Mielczarek, J., Szczepanek, F., Czelusta, G., Grabowski, B., Le Saux, B., & Nalepa, J. (2023, July). Cloud Detection in Multispectral Satellite Images Using Support Vector Machines with Quantum Kernels. In IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium (pp. 796-799). IEEE. | link | link |
| Fan, F., Shi, Y., & Zhu, X. X. (2023, May). Urban land cover classification from Sentinel-2 images with quantum-classical network. In 2023 Joint Urban Remote Sensing Event (JURSE) (pp. 1-4). IEEE. | link | link |
| Nammouchi, A., Kassler, A., & Theocharis, A. (2023). Quantum Machine Learning in Climate Change and Sustainability: A Short Review. In Proceedings of the AAAI Symposium Series (Vol. 2, No. 1, pp. 107-114). | link | link |
| Otgonbaatar, S., & Kranzlmüller, D. (2023). Exploiting the Quantum Advantage for Satellite Image Processing: Review and Assessment. IEEE Transactions on Quantum Engineering. | link | link |
| Otgonbaatar, S., Schwarz, G., Datcu, M., & Kranzlmüller, D. (2023). Quantum transfer learning for real-world, small, and high-dimensional remotely sensed datasets. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. | link | link |
| Miller, L., Uehara, G., Sharma, A., & Spanias, A. (2023, June). Quantum Machine Learning for Optical and SAR Classification. In 2023 24th International Conference on Digital Signal Processing (DSP) (pp. 1-5). IEEE. | link | link |
| Otgonbaatar, S., & Kranzlmüller, D. (2023, July). Quantum-inspired tensor network for earth science. In IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium (pp. 788-791). IEEE. | link | link |
| van Waveren, M., Savinaud, M., Pasero, G., Defonte, V., Brunet, P. M., Faucoz, O., Gawron, P., Gardas, B., Puchała, Z., & Pawela, Ł. (2023, July). Comparison of quantum neural network algorithms for Earth observation data classification. In IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium (pp. 780-783). IEEE. | link | link |
| Lin, C. H., & Chen, Y. Y. (2023). HyperQUEEN: Hyperspectral quantum deep network for image restoration. IEEE Transactions on Geoscience and Remote Sensing, 61, 1-20. | link | link |
| Otgonbaatar, S., Nurmi, O., Johansson, M., Mäkelä, J., Gawron, P., Puchała, Z., Mielzcarek, J., Miroszewski, A., Dumitru, C. O., et al. (2023). Quantum computing for climate change detection, climate modeling, and climate digital twin. Authorea Preprints. | link | link |
| Rainjonneau, S., Tokarev, I., Iudin, S., Rayaprolu, S., Pinto, K., Lemtiuzhnikova, D., Koblan, M., Barashov, E., Kordzanganeh, M., Pflitsch, M., et al. (2023). Quantum algorithms applied to satellite mission planning for Earth observation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, 7062-7075. | link | link |
| Zhang, J., Zhang, Y., & Zhou, Y. (2023). Quantum-inspired spectral-spatial pyramid network for hyperspectral image classification. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 9925-9934). | link | link |
| Bhavsar, R., Jadav, N. K., Bodkhe, U., Gupta, R., Tanwar, S., Sharma, G., Bokoro, P. N., & Sharma, R. (2023). Classification of potentially hazardous asteroids using supervised quantum machine learning. IEEE Access, 11, 75829-75848. | link | link |
| APA | Original Link | arXiv or similar |
|---|---|---|
| Chang, S. Y., Le Saux, B., Vallecorsa, S., & Grossi, M. (2022, July). Quantum convolutional circuits for earth observation image classification. In IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium (pp. 4907-4910). IEEE. | link | link |
| Fan, F., Shi, Y., & Zhu, X. X. (2022, July). Earth Observation Data Classification with Quantum-Classical Convolutional Neural Network. In IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium (pp. 191-194). IEEE. | link | link |
| Otgonbaatar, S., Datcu, M., Zhu, X. X., & Kranzlmüller, D. (2022). Quantum Machine Learning for Real-World, Large Scale Datasets with Applications in Earth Observation. | link | link |
| Pasetto, E., Delilbasic, A., Cavallaro, G., Willsch, M., Melgani, F., Riedel, M., & Michielsen, K. (2022, July). Quantum Support Vector Regression for Biophysical Variable Estimation in Remote Sensing. In IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium (pp. 4903-4906). IEEE. | link | link |
| Shaik, R. U., & Periasamy, S. (2022). Accuracy and processing speed trade-offs in classical and quantum SVM classifier exploiting PRISMA hyperspectral imagery. International Journal of Remote Sensing, 43(15-16), 6176-6194. | link | link |
| Gupta, M. K., Beseda, M., & Gawron, P. (2022, July). How quantum computing-friendly multispectral data can be?. In IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium (pp. 4153-4156). IEEE. | link | link |
| Majji, S. R., Chalumuri, A., Kune, R., & Manoj, B. S. (2022). Quantum processing in fusion of SAR and optical images for deep learning: A data-centric approach. IEEE Access, 10, 73743-73757. | link | link |
| Zollner, J. M. (2022, November). Quantum classifiers for remote sensing. In Proceedings of the 30th International Conference on Advances in Geographic Information Systems (pp. 1-2). | link | link |
| Shaik, R. U., Unni, A., & Zeng, W. (2022). Quantum based pseudo-labelling for hyperspectral imagery: A simple and efficient semi-supervised learning method for machine learning classifiers. Remote Sensing, 14(22), 5774. | link | link |
| APA | Original Link | arXiv or similar |
|---|---|---|
| Zaidenberg, D. A., Sebastianelli, A., Spiller, D., Le Saux, B., & Ullo, S. L. (2021, July). Advantages and bottlenecks of quantum machine learning for remote sensing. In 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS (pp. 5680–5683). IEEE. | link | link |
| Sebastianelli, A., Zaidenberg, D. A., Spiller, D., Le Saux, B., & Ullo, S. L. (2021). On circuit-based hybrid quantum neural networks for remote sensing imagery classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 565–580. | link | link |
| Otgonbaatar, S., & Datcu, M. (2021). Assembly of a coreset of earth observation images on a small quantum computer. Electronics, 10(20), 2482. | link | link |
| Otgonbaatar, S., & Datcu, M. (2021). Classification of remote sensing images with parameterized quantum gates. IEEE Geoscience and Remote Sensing Letters, 19, 1–5. | link | — |
| Otgonbaatar, S., & Datcu, M. (2021). A quantum annealer for subset feature selection and the classification of hyperspectral images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 7057–7065. | link | — |
| Chalumuri, A., Kune, R., Kannan, S., & Manoj, B. S. (2021). Quantum-enhanced deep neural network architecture for image scene classification. Quantum Information Processing, 20(11), 381. | link | — |