awesome-QC4EO

2025

APA Original Link arXiv or similar
Sebastianelli, A., Mauro, F., Ciabatti, G., Spiller, D., Le Saux, B., Gamba, P., & Ullo, S. (2025). Quanv4eo: empowering earth observation by means of quanvolutional neural networks. IEEE Transactions on Geoscience and Remote Sensing. link link
Pastori, L., Grundner, A., Eyring, V., & Schwabe, M. (2025). Quantum Neural Networks for Cloud Cover Parameterizations in Climate Models. arXiv preprint arXiv:2502.10131. link link
Mauro, F., Razzano, F., Stasio, P. Di., Sebastianelli, A., Meoni, G., Schirinzi, G., Gamba, P., & Ullo, S. L. (2025). Quantum-Enhanced Water Quality Monitoring: Exploiting ΦSat-2 Data with Quanvolution. IEEE Geoscience and Remote Sensing Letters. link link
Fan, F., Shi, Y., Guggemos, T., & Zhu, X. X. (2025). Hybrid Quantum Deep Learning With Superpixel Encoding for Earth Observation Data Classification. IEEE Transactions on Neural Networks and Learning Systems. link link
Liliopoulos, I., Varsamis, G. D., Milchanowski, K., Martin‑Cuevas, R., Safouri, K., Dimitrakis, P., & Karafyllidis, I. G. (2025). Hybrid classical-quantum multilayer neural networks for monitoring agricultural activities using remote sensing data. Quantum Machine Intelligence, 7(1), 4. link link

2024

APA Original Link arXiv or similar
Mauro, F., Sebastianelli, A., Saux, B. L., Gamba, P., & Ullo, S. L. (2024). A Hybrid MLP-Quantum approach in Graph Convolutional Neural Networks for Oceanic Nino Index (ONI) prediction. arXiv preprint arXiv:2401.16049. link link
Mauro, F., Sebastianelli, A., Del Rosso, M. P., Gamba, P., & Ullo, S. L. (2024). QSpeckleFilter: a Quantum Machine Learning approach for SAR speckle filtering. arXiv preprint arXiv:2402.01235. link link
Pasetto, E., Riedel, M., Michielsen, K., & Cavallaro, G. (2024). Kernel Approximation on a Quantum Annealer for Remote Sensing Regression Tasks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. link link
Malarvanan, A. S. (2024). Hybrid Quantum Neural Network Advantage for Radar-Based Drone Detection and Classification in Low Signal-to-Noise Ratio. arXiv preprint arXiv:2403.02080. link link
Delilbasic, A., Le Saux, B., Riedel, M., Michielsen, K., & Cavallaro, G. (2024, April). Quantum Annealing for Semantic Segmentation in Remote Sensing: Potential and Limitations. In 2024 IEEE Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS) (pp. 376-380). IEEE. link link
Ghosh, R., Delilbasic, A., Cavallaro, G., & Bovolo, F. (2024, April). A Hybrid Quantum-Classical CNN Architecture for Semantic Segmentation of Radar Sounder Data. In 2024 IEEE Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS) (pp. 366-370). IEEE. link link
Chang, S. Y., Grossi, M., Thanasilp, S., Le Saux, B., & Vallecorsa, S. (2024). Latent Style-based Quantum GAN for high-quality Image Generation. arXiv preprint arXiv:2406.02668. link link
Glatting, K., Meyer, J., Huber, S., & Krieger, G. (2024, July). Quantum Kernel Methods for Insar Phase Unwrapping. In IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium (pp. 437-441). IEEE. link link
Sarkar, D., Dimitrov, E., Vieites, P. S., Fernandez-Urrutia, M., Kannan, V., & PS, P. (2024, July). Multiclass Land Use/Land Cover (LULC) Classification Using Quantum Enhanced Support Vector Machines. In IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium (pp. 446-449). IEEE. link link
Meyer, J., Glatting, K., Huber, S., & Krieger, G. (2024, July). Quantum Reinforcement Learning for Cognitive SAR. In IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium (pp. 794-798). IEEE. link link
Miroszewski, A., Le Saux, B., Longépé, N., & Nalepa, J. (2024, July). Utility of quantum kernel machines in remote sensing applications. In IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium (pp. 799-803). IEEE. link link
Painchart, H., Van Waveren, M., Mora, B., & Pasero, G. (2024, July). Quantum Algorithm for the Analysis of Temporal Sequences of Satellite Images. In IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium (pp. 804-807). IEEE. link link
Asanjan, A. A., Brady, L., Suri, N., Izquierdo, Z. G., Lott, P. A., Grabbe, S., & Rieffel, E. (2024, July). Wildfire Segmentation From Remotely Sensed Data Using Quantum-Compatible Conditional Vector Quantized-Variational Autoencoders. In IEEE International Geoscience and Remote Sensing Symposium (IGARSS). link link
Pai, A. G., Buddhiraju, K. M., & Durbha, S. S. (2024, July). Binary Classification of Remotely Sensed Images Using SVD Based GLCM Features in Quantum Framework. In IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium (pp. 808-811). IEEE. link link
Wijata, A. M., Miroszewski, A., Le Saux, B., Longépé, N., Ruszczak, B., & Nalepa, J. (2024, July). Detection of bare soil in hyperspectral images using quantum-kernel support vector machines. In IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium (pp. 817-822). IEEE. link link
Lin, C. H., Kuo, C. Y., & Young, S. S. (2024, July). Quantum Adversarial Learning for Hyperspectral Remote Sensing. In IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium (pp. 7807-7811). IEEE. link link
Xu, Y., Huang, H., & State, R. (2024). Cropland Quantum Learning: A Hybrid Quantum-Classical Neural Network for Cropland Classification. In 2024 IEEE 3rd International Conference on Computing and Machine Intelligence (ICMI) (pp. 1-7). IEEE. link link
Fan, F., Shi, Y., & Zhu, X. X. (2024). Land Cover Classification From Sentinel-2 Images With Quantum-Classical Convolutional Neural Networks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. link link
Fan, F., Shi, Y., Guggemos, T., & Zhu, X. X. (2024). Hybrid quantum-classical convolutional neural network model for image classification. IEEE transactions on neural networks and learning systems. link link
Zollner, J. M., Walther, P., & Werner, M. (2024). Satellite Image Representations for Quantum Classifiers. Datenbank-Spektrum, 24(1), 33-41. link link
Park, S., Jung, S., & Kim, J. (2024). Dynamic quantum federated learning for satellite-ground integrated systems using slimmable quantum neural networks. IEEE Access, 12, 58239-58247. link link
Ghosh, R., Delilbasic, A., Cavallaro, G., & Bovolo, F. (2024, July). A CNN Architecture Tailored For Quantum Feature Map-Based Radar Sounder Signal Segmentation. In IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium (pp. 442-445). IEEE. link link
Rodriguez-Grasa, P., Farzan Rodríguez, R., Novelli, G., Ban, Y., & Sanz, M. (2024). Satellite image classification with neural quantum kernels. Machine Learning: Science and Technology. link link
Hsu, S. M., Lin, T. H., & Lin, C. H. (2024, July). HyperQUEEN-MF: Hyperspectral quantum deep network with multi-scale feature fusion for quantum image super-resolution. In 2024 IEEE 13rd Sensor Array and Multichannel Signal Processing Workshop (SAM) (pp. 1-5). IEEE. link link
Lin, C. H., Lin, T. H., & Chanussot, J. (2024). Quantum Information-Empowered Graph Neural Network for Hyperspectral Change Detection. IEEE Transactions on Geoscience and Remote Sensing. link link
De Falco, F., Ceschini, A., Sebastianelli, A., Le Saux, B., & Panella, M. (2024). Quantum latent diffusion models. Quantum Machine Intelligence, 6(2), 85. link link
Papa, L., Sebastianelli, A., Meoni, G., & Amerini, I. (2024). On the impact of key design aspects in simulated Hybrid Quantum Neural Networks for Earth Observation. arXiv preprint arXiv:2410.08677. link link
Priyanka, G. S., & Venkatesan, M. (2024, August). Hyperspectral Image Classification Using Quantum Machine Learning. In 2024 1st International Conference on Advanced Computing and Emerging Technologies (ACET) (pp. 1-7). IEEE. link link
Miller, L., Uehara, G., & Spanias, A. (2024, March). Quantum Image Fusion Methods for Remote Sensing. In 2024 IEEE Aerospace Conference (pp. 1-9). IEEE. link link
Yu, L. H., Li, X. Y., Chen, G., Zhu, Q. S., Li, H., & Yang, G. W. (2024). QUSL: Quantum unsupervised image similarity learning with enhanced performance. Expert Systems with Applications, 258, 125112. link link
Miroszewski, A., Asiani, M. F., Mielczarek, J., Saux, B. L., & Nalepa, J. (2024). In search of quantum advantage: Estimating the number of shots in quantum kernel methods. arXiv preprint arXiv:2407.15776. link link
Zardini, E., Delilbasic, A., Blanzieri, E., Cavallaro, G., & Pastorello, D. (2024). Local Binary and Multiclass SVMs Trained on a Quantum Annealer. IEEE Transactions on Quantum Engineering, 5, 1-12. link link

2023

APA Original Link arXiv or similar
Ullo, S. L., Mauro, F., Sebastianelli, A., Le Saux, B., & Gamba, P. E. (2024). Enhancing Earth Observation with Hybrid Quantum Neural Networks. AGU23. link link
Sebastianelli, A., Del Rosso, M. P., Ullo, S. L., & Gamba, P. (2023). On Quantum Hyperparameters Selection in Hybrid Classifiers for Earth Observation Data. IEEE Geoscience and Remote Sensing Letters. link link
Delilbasic, A., Le Saux, B., Riedel, M., Michielsen, K., & Cavallaro, G. (2023). A single-step multiclass svm based on quantum annealing for remote sensing data classification. IEEE journal of selected topics in applied earth observations and remote sensing. link link
Miroszewski, A., Nalepa, J., Saux, B. L., & Mielczarek, J. (2023). Quantum Machine Learning for Remote Sensing: Exploring potential and challenges. arXiv preprint arXiv:2311.07626. link link
Gupta, M. K., Romaszewski, M., & Gawron, P. (2023). Potential of quantum machine learning for processing multispectral Earth observation data. Authorea Preprints. link link
Chang, S. Y., Grossi, M., Le Saux, B., & Vallecorsa, S. (2023, September). Approximately equivariant quantum neural network for p4m group symmetries in images. In 2023 IEEE International Conference on Quantum Computing and Engineering (QCE) (Vol. 1, pp. 229-235). IEEE. link link
Miroszewski, A., Mielczarek, J., Czelusta, G., Szczepanek, F., Grabowski, B., Le Saux, B., & Nalepa, J. (2023). Detecting clouds in multispectral satellite images using quantum-kernel support vector machines. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. link link
Miroszewski, A., Mielczarek, J., Szczepanek, F., Czelusta, G., Grabowski, B., Le Saux, B., & Nalepa, J. (2023, July). Cloud Detection in Multispectral Satellite Images Using Support Vector Machines with Quantum Kernels. In IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium (pp. 796-799). IEEE. link link
Fan, F., Shi, Y., & Zhu, X. X. (2023, May). Urban land cover classification from Sentinel-2 images with quantum-classical network. In 2023 Joint Urban Remote Sensing Event (JURSE) (pp. 1-4). IEEE. link link
Nammouchi, A., Kassler, A., & Theocharis, A. (2023). Quantum Machine Learning in Climate Change and Sustainability: A Short Review. In Proceedings of the AAAI Symposium Series (Vol. 2, No. 1, pp. 107-114). link link
Otgonbaatar, S., & Kranzlmüller, D. (2023). Exploiting the Quantum Advantage for Satellite Image Processing: Review and Assessment. IEEE Transactions on Quantum Engineering. link link
Otgonbaatar, S., Schwarz, G., Datcu, M., & Kranzlmüller, D. (2023). Quantum transfer learning for real-world, small, and high-dimensional remotely sensed datasets. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. link link
Miller, L., Uehara, G., Sharma, A., & Spanias, A. (2023, June). Quantum Machine Learning for Optical and SAR Classification. In 2023 24th International Conference on Digital Signal Processing (DSP) (pp. 1-5). IEEE. link link
Otgonbaatar, S., & Kranzlmüller, D. (2023, July). Quantum-inspired tensor network for earth science. In IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium (pp. 788-791). IEEE. link link
van Waveren, M., Savinaud, M., Pasero, G., Defonte, V., Brunet, P. M., Faucoz, O., Gawron, P., Gardas, B., Puchała, Z., & Pawela, Ł. (2023, July). Comparison of quantum neural network algorithms for Earth observation data classification. In IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium (pp. 780-783). IEEE. link link
Lin, C. H., & Chen, Y. Y. (2023). HyperQUEEN: Hyperspectral quantum deep network for image restoration. IEEE Transactions on Geoscience and Remote Sensing, 61, 1-20. link link
Otgonbaatar, S., Nurmi, O., Johansson, M., Mäkelä, J., Gawron, P., Puchała, Z., Mielzcarek, J., Miroszewski, A., Dumitru, C. O., et al. (2023). Quantum computing for climate change detection, climate modeling, and climate digital twin. Authorea Preprints. link link
Rainjonneau, S., Tokarev, I., Iudin, S., Rayaprolu, S., Pinto, K., Lemtiuzhnikova, D., Koblan, M., Barashov, E., Kordzanganeh, M., Pflitsch, M., et al. (2023). Quantum algorithms applied to satellite mission planning for Earth observation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, 7062-7075. link link
Zhang, J., Zhang, Y., & Zhou, Y. (2023). Quantum-inspired spectral-spatial pyramid network for hyperspectral image classification. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 9925-9934). link link
Bhavsar, R., Jadav, N. K., Bodkhe, U., Gupta, R., Tanwar, S., Sharma, G., Bokoro, P. N., & Sharma, R. (2023). Classification of potentially hazardous asteroids using supervised quantum machine learning. IEEE Access, 11, 75829-75848. link link

2022

APA Original Link arXiv or similar
Chang, S. Y., Le Saux, B., Vallecorsa, S., & Grossi, M. (2022, July). Quantum convolutional circuits for earth observation image classification. In IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium (pp. 4907-4910). IEEE. link link
Fan, F., Shi, Y., & Zhu, X. X. (2022, July). Earth Observation Data Classification with Quantum-Classical Convolutional Neural Network. In IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium (pp. 191-194). IEEE. link link
Otgonbaatar, S., Datcu, M., Zhu, X. X., & Kranzlmüller, D. (2022). Quantum Machine Learning for Real-World, Large Scale Datasets with Applications in Earth Observation. link link
Pasetto, E., Delilbasic, A., Cavallaro, G., Willsch, M., Melgani, F., Riedel, M., & Michielsen, K. (2022, July). Quantum Support Vector Regression for Biophysical Variable Estimation in Remote Sensing. In IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium (pp. 4903-4906). IEEE. link link
Shaik, R. U., & Periasamy, S. (2022). Accuracy and processing speed trade-offs in classical and quantum SVM classifier exploiting PRISMA hyperspectral imagery. International Journal of Remote Sensing, 43(15-16), 6176-6194. link link
Gupta, M. K., Beseda, M., & Gawron, P. (2022, July). How quantum computing-friendly multispectral data can be?. In IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium (pp. 4153-4156). IEEE. link link
Majji, S. R., Chalumuri, A., Kune, R., & Manoj, B. S. (2022). Quantum processing in fusion of SAR and optical images for deep learning: A data-centric approach. IEEE Access, 10, 73743-73757. link link
Zollner, J. M. (2022, November). Quantum classifiers for remote sensing. In Proceedings of the 30th International Conference on Advances in Geographic Information Systems (pp. 1-2). link link
Shaik, R. U., Unni, A., & Zeng, W. (2022). Quantum based pseudo-labelling for hyperspectral imagery: A simple and efficient semi-supervised learning method for machine learning classifiers. Remote Sensing, 14(22), 5774. link link

2021

APA Original Link arXiv or similar
Zaidenberg, D. A., Sebastianelli, A., Spiller, D., Le Saux, B., & Ullo, S. L. (2021, July). Advantages and bottlenecks of quantum machine learning for remote sensing. In 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS (pp. 5680–5683). IEEE. link link
Sebastianelli, A., Zaidenberg, D. A., Spiller, D., Le Saux, B., & Ullo, S. L. (2021). On circuit-based hybrid quantum neural networks for remote sensing imagery classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 565–580. link link
Otgonbaatar, S., & Datcu, M. (2021). Assembly of a coreset of earth observation images on a small quantum computer. Electronics, 10(20), 2482. link link
Otgonbaatar, S., & Datcu, M. (2021). Classification of remote sensing images with parameterized quantum gates. IEEE Geoscience and Remote Sensing Letters, 19, 1–5. link
Otgonbaatar, S., & Datcu, M. (2021). A quantum annealer for subset feature selection and the classification of hyperspectral images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 7057–7065. link
Chalumuri, A., Kune, R., Kannan, S., & Manoj, B. S. (2021). Quantum-enhanced deep neural network architecture for image scene classification. Quantum Information Processing, 20(11), 381. link